

Cyclosporin A, a non-genotoxic carcinogen – its possible mechanisms of action

<u>Tim Ravnjak^{1,3}</u>, Martina Štampar¹, Marc Audebert² and Bojana Žegura^{1,3}

¹ National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia

Partnership Control Assessment Risks Risk ² National Research Institute for Agriculture, Food and the Environment (INRAE), TOXALIM Research centre in food toxicology, 118 Route de Narbonne,

Toulouse, France

³ Jozef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia corresponding author: tim.ravnjak@nib.si

OVERVIEW

Non-genotoxic carcinogens induce cancer without directly affecting DNA. Instead of causing mutations, they disrupt cellular processes like cell cycle regulation, proliferation, epigenetics, inflammation, or oxidative stress, leading to cancer.

AIM

To investigate the mechanism of action of Cyclosporin A, IARC group 1 (non-genotoxic) carcinogen and a non-carcinogenic Ampicillin trihydrate.

CAN EXISITING MODELS ADEQUATELY IDENTIFY NON-GENOTOXIC CARCINOGENS?

Carcinogenicity studies are traditionally focused on detecting DNA damage, posing a risk of non-genotoxic carcinogens being undetected and consequentyl unregulated.

Impose There is an urgent need to establish new reliable *in vitro* methodologies to detect NgtxC and discover their MoA.

CONCLUSIONS

Non-genotoxic carcinogen Cyclosporin A did not influence cell viability at tested conditions.

Cyclosporin A induced moderate, however insignificant increase in G0/G1 cell number and yH2AX.

Cyclosporin A decreased cell proliferation dose and time dependently.

Cyclosporin A did not impact mitotic cell formation.

FUTURE STEPS Transcriptomic analysis of genes involved multiple in xenobiotic cellular (oxidative stress, processess metabolism, apoptotsis,...), aiming to identifiy molecular pathways leading to non-genotoxic induced oncogenic changes.

Cyclosporin A

Results

Figure 1: Viability of HepG2 cells in spheroids (MTS assay) after 24h and 96h exposure to Cyclosporin A and Ampcillin trihydrat. PC—positive control (15% DMSO). * significantly different from solvent control, * p < 0.05; *** p < 0.001; **** p > 0.0001 (one-way ANOVA; Dunnett's multiple comparison test).

Figure 2: The % of HepG2 cells from spheroids across cell cycle phases after exposure to Cyclosporin A and Ampicillin trihydrate after 24h and 96h. Etoposide (1.7 µM) was a positive control (PC). The % of cell cycle distribution is presented as mean (N=3).

Figure 3: Percentage of Ki67 positive cells normalized to negative control after exposure to Cyclosporin A and Ampicillin trihydrate for 24h 96h. * significantly different from solvent control, * p < 0.05; ** p < 0.01; **** p > 0.0001 (one-way ANOVA; Dunnett's multiple comparison test).

MTS assay

Cell cycle distribution

Proliferation

DNA damage

Mitotic cell formation

Figure 4: Mean fluorescence corresponding to anti-yH2AX labeled sites after exposure to Cyclosporin A and Ampicillin trihydrate for 24h and 96h. * significantly different from solvent control, * p < 0.05; ** p < 0.01; (one-way ANOVA; Dunnett's multiple comparison test).

Figure 5: Percentage of pH3 positive cells after exposure to Cyclosporin A and Ampicillin trihydrate for 24h and 96h. * significantly different from solvent control, **** p > 0.0001 (one-way ANOVA; Dunnett's multiple comparison test).

Financially supported by ARIS [P1-0245, J1-2465], HEU projects CutCancer (101079113), PARC (101057014).

Conference attendance financially supported by EEMGS New Investigators travel grant.