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INRAZ

Non-genotoxic carcinogens induce cancer without directly affecting DNA. Instead of causing mutations, they disrupt cellular processes like cell
cycle regulation, proliferation, epigenetics, inflammation, or oxidative stress, leading to cancer.

AIM

To investigate the mechanism of action of Cyclosporin A, IARC group 1 (hon-genotoxic) carcinogen and a non-carcinogenic Ampicillin trihydrate.

CAN EXISITING MODELS ADEQUATELY IDENTIFY NON-GENOTOXIC CARCINOGENS?

= Carcinogenicity studies are traditionally focused on detecting DNA damage, posing a risk of non-genotoxic carcinogens being undetected and

consequentyl unregulated.

=) There is an urgent need to establish new reliable in vitro methodologies to detect NgtxC and discover their MoA.

CONCLUSIONS

= Non-genotoxic carcinogen Cyclosporin A did not

influence cell viability at tested conditions.

=» Cyclosporin A induced moderate, however
insignificant increase in G0/G1 cell number and yH2AX.

= Cyclosporin A decreased cell proliferation dose and

time dependently.

= Cyclosporin A did not impact mitotic cell formation.

FUTURE STEPS

Transcriptomic analysis of genes Involved in multiple
stress,
metabolism, apoptotsis,...), aiming to identifiy molecular
pathways leading to nhon-genotoxic induced oncogenic GININTRININ IS

cellular processess (oxidative

changes.
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Results

Figure 1: Viability of HepG2 cells in spheroids (MTS assay) after 24h and
96h exposure to Cyclosporin A and Ampcillin trihydrat. PC—positive

control (15% DMSO). * significantly different from solvent control, * p < 0.05;
*** p < 0.001; **** p > 0.0001 (one-way ANOVA; Dunnett’s multiple comparison
test).

Figure 2: The % of HepG2 cells from spheroids across cell cycle phases after
exposure to Cyclosporin A and Ampicillin trihydrate after 24h and 96h.
Etoposide (1.7 uM) was a positive control (PC). The % of cell cycle distribution is
presented as mean (N=3).

Figure 3: Percentage of Ki67 positive cells normalized to negative control
after exposure to Cyclosporin A and Ampicillin trihydrate for 24h 96h. *
significantly different from solvent control, * p < 0.05; ** p < 0.01; **** p >
0.0001 (one-way ANOVA; Dunnett’s multiple comparison test).

Figure 4: Mean fluorescence corresponding to anti-yH2AX labeled sites
after exposure to Cyclosporin A and Ampicillin trihydrate for 24h and 96h. *
significantly different from solvent control, * p < 0.05; ** p < 0.01; (one-way
ANOVA; Dunnett’s multiple comparison test).

Figure 5: Percentage of pH3 positive cells after exposure to Cyclosporin A
and Ampicillin trihydrate for 24h and 96h. * significantly different from solvent
control, **** p > 0.0001 (one-way ANOVA; Dunnett’s multiple comparison
test).
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