Achillea millefolium L. – a potential anticancer candidate?

Introduction

The problem of rapidly growing chemiotherapeutics resistance worldwide compromises the effectiveness of disease treatment and leads to the constant search for new anticancer agents from natural sources, especially plants. *Achillea millefolium* L. (yarrow) is commonly used in both folk medicine and modern phytotherapy.

Matherials and Methods

Chemical analysis was conducted by quantitative LC–MS analysis for methanol extract and GC-FID and GC-MS analysis for dichloromethane extract. Cytotoxic potential was investigated by MTT assay on lung adenocarcinoma (A549), colorectal adenocarcinoma (HCT116), and normal fetal fibroblast (MRC-5) cell lines. As it is crucial that the potential anticancer agent possesses selective toxicity, anticancer selectivity index (SI_C) was calculated. The genotoxicity was investigated through the alkaline comet assay on the mentioned cell lines.

Results

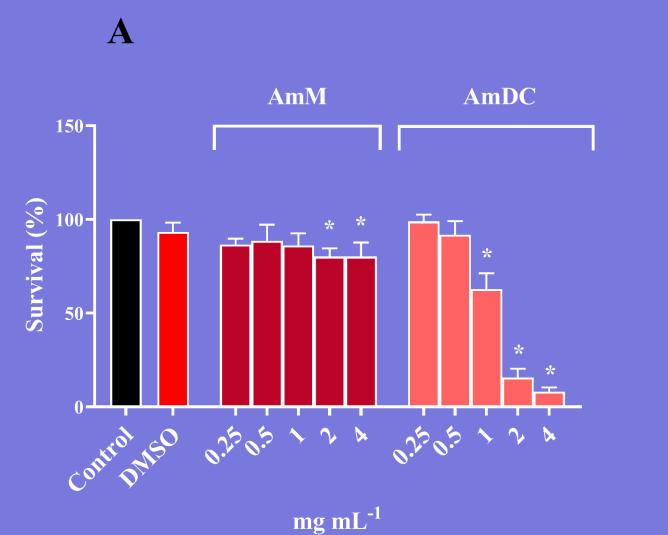
The results of MTT test highlight the dichloromethane extract as the most potent against all tested cell lines with highest cell viability reduction seen on A549 cells (up to 94 %)(Figure 1.). Genotoxicity, investigated through the alkaline comet assay, revealed that both extracts induced damages on DNA at all tested concentrations in dose-dependent manner, with 23.9% as the highest observed tail intensity (Figure 2.).

Acknowledgement

Supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Contracts No. 451-03-66/2024-03/200178, 451-03-65/2024-03/200178, 451-03-66/2024-03/200161).

Conclusions

Dichloromethane extract showed highest cytotoxicity effect against all tested cell lines.


Dichloromethane extract exhibited highest anticancer selectivity index value towards A549 cells (SI > 3).

Cytotoxic and genotoxic potential of *Achillea millefolium* L. herb methanol and dichloromethane extracts

<u>Ana Ignjatijevic¹</u>, Stefana Cvetkovic¹, Jelena Kukić-Marković², Stefana Vuletic¹, Ljuboš Ušjak², Violeta Milutinović², Tea Ganic¹, Dragana Mitic-Culafic¹, Silvana Petrović², Biljana Nikolic¹

¹Department of Microbiology, University of Belgrade - Faculty of Biology, Studentski trg 16, Belgrade, Serbia ²Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, Serbia *Contact: b3004_2023@stud.bio.bg.ac.rs*

B

Control DM50 0,25 0,5 1 2 & 0,25 0,5 1 2 & mg mL⁻¹

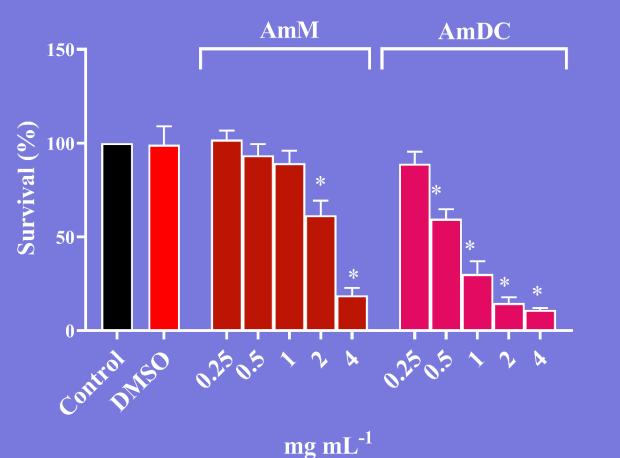


Figure 1. Cytotoxic potential of A.millefoliummethanolicanddichloremethaneextracts on MRC-5(A), A549 (B) and HCT116 (C) celllines (*p < 0.05)</td>

Table 1. IC₅₀ values determined for *A. millefolium* extracts

C

IC50	MRC-5	A549	HCT 116
AmM (mg mL ⁻¹)	>4	1.3	2.6
AmDC (mg mL ⁻¹)	2.9	0.7	0.7

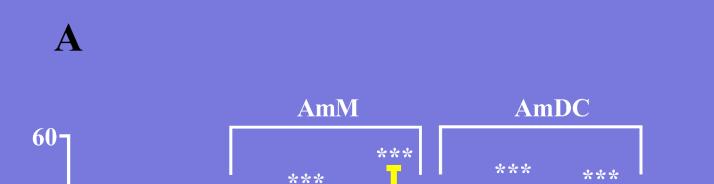
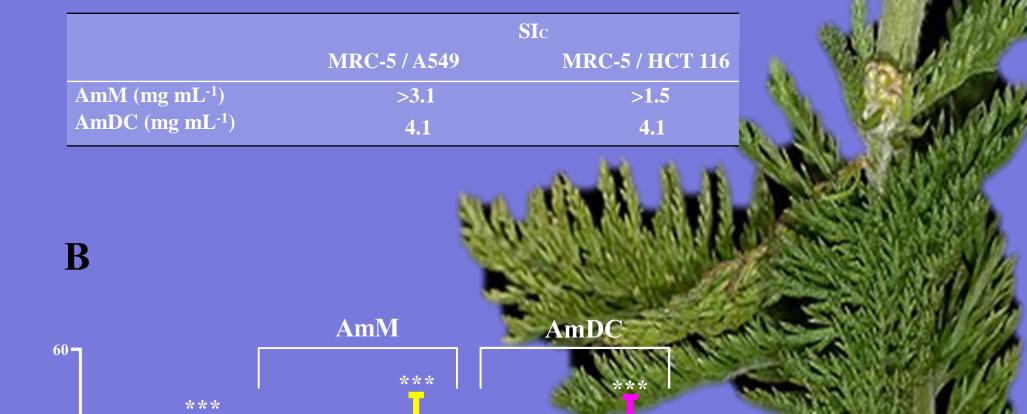
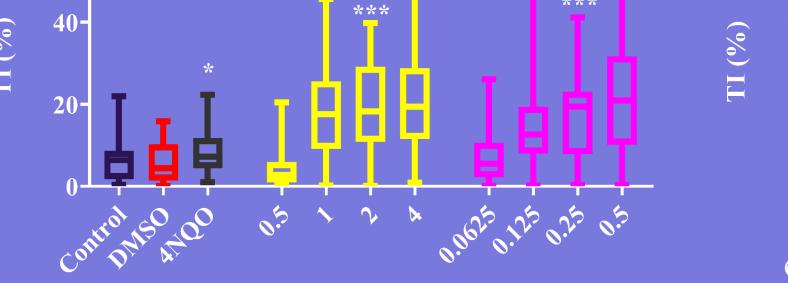
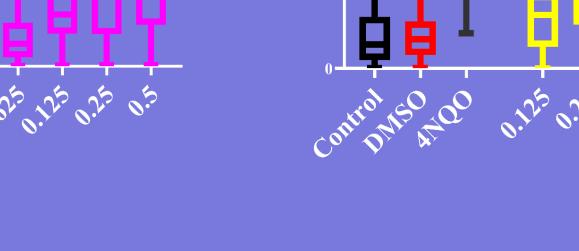



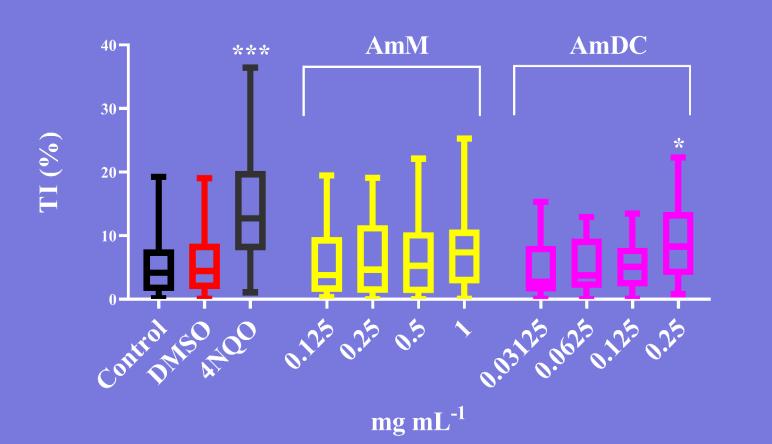
Table 2. Anticancer selectivity indexes (SIc) of *A. millefolium* extracts



Both extracts induced genotoxicity at all tested concentrations in dose-dependent manner.

Based on the obtained results, *A. millefolium* extracts surface as potential candidates for novel anticancer therapeutics, although additional research into its underlying mechanisms is required.


Table 3. Detected phenolic compounds as well as their quantities [expressed as g/100 g dried MeOH extract (DE)]


	Rt (min)	Compound	%, g/100 g DE
	10.94	Chlorogenic acid	2.216±0.167 ^a
	12.11	Caffeic acid derivative	0.064 ± 0.008^{b}
	18.20	Kaempferol hexosylhexoside	tr. ^c
	19.79	Quercetin pentosylhexoside	0.002 ± 0.000
	20.17	Hydroxykaemferol hexoside	tr.
	21.10	Quercetin 7-O-rutinoside	0.190 ± 0.026
	21.50	Apigenin hexosylhexuronide	0.032 ± 0.002
	21.80	Luteolin 7-O-rutinoside	0.026 ± 0.001
	22.17	Quercetin 3-O-glucoside	0.079 ± 0.005
	22.86	Luteolin 7-O-glucoside	2.126±0.013
	23.04	Luteolin 7-O-glucuronide	0.443 ± 0.007
	23.34	Methylquercetin hexoside	tr.
	23.80	1,3-di-O-caffeoylquinic acid	0.394 ± 0.013
	24.15	Apigenin 7-O-rutinoside	0.084 ± 0.008
	24.60	3,4-Di- <i>O</i> -caffeoylquinic acid	0.999 ± 0.018
	25.06	3,5-Di-O-caffeoylquinic acid	7.839 ± 0.058
	25.06	Di-O-caffeoylquinic acid isomer 1	1.782 ± 0.025
	25.55	Apigenin 7-O-glucoside	1.572 ± 0.010
	25.94	1,5-Di-O-caffeoylquinic acid	3.497 ± 0.023
	26.49	Luteolin hexoside derivative	tr.
1	26.94	Luteolin acylhexoside	tr.
10	27.47	Di-O-caffeoylquinic acid isomer 2	0.578 ± 0.011
S. A.	28.28	Luteolin acylhexoside	0.001 ± 0.000
15 6	28.53	Apigenin acylhexoside	tr.
20	29,42	Apigenin acylhexoside	0.058 ± 0.001
3.58	29.44	Apigenin acylhexoside	0.062 ± 0.002
13	29.70	Luteolin	0.186 ± 0.006
	31.70	Apigenin	0.283 ± 0.009

mg mL⁻

C

Figure 2. Genotoxic potential of *A. millefolium* extracts on MRC-5 (A), A549 (B) and HCT116 (C) cell lines (*p < 0.05)

mg mL

Table 4. Phytosterol and triterpene composition ofunsaponifiable fraction of AmDC

Rt	Compound	0⁄0
78.23	Campesterol	6.8 ± 0.2
79.15	Stigmasterol	5.7 ± 0.1
80.66	β -Amyrin	11.8 ± 0.0
81.02	β -Sitosterol	18.8 ± 0.5
82.20	a-Amyrin	22.2 ± 0.2
83.05	Δ^7 -Stigmastenol	4.1 ± 0.1
85.93	Taraxasterol isomer 1 ^a	17.0 ± 0.0
86.20	Taraxasterol isomer 2 ^a	5.0 ± 0.0
	Total identified	91.4
	Total phytosterols and triterpenes in	20.1
and the second	unsaponifiable fractions	